Contact Resistance for “End-Contacted” Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics

نویسنده

  • Yuki Matsuda
چکیده

In this paper, we predict the current-voltage (I-V) characteristics and contact resistance of “end-contacted” metal electrode-graphene and metal electrode-carbon nanotube (CNT) interfaces for five metals, Ti, Pd, Pt, Cu, and Au, based on the first-principles quantum mechanical (QM) density functional and matrix Green’s function methods. We find that the contact resistance (normalized to surface C atoms) is 107 kΩ for Ti, 142 kΩ for Pd, 149 kΩ for Pt, 253 kΩ for Cu, and 187 kΩ for Au. This can be compared with the contact resistance (per C) for “side-contacted” metal-graphene or metal-CNT interfaces of 8.6 MΩ for Pd, 34.7 MΩ for Pt, 630 MΩ for Cu, etc. Those are in good agreement with available experimental results, 40.5 MΩ for Pt, for example. Thus, compared to the values for side-contacted interfaces from QM, we find a decrease in contact resistance by factors ranging from 6751 for Au and 2488 for Cu, to 233 for Pt and 60 Pd, to 8.8 for Ti. This suggests a strong advantage for developing technology to achieve “end-contacted” configurations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Origin of Contact Resistance at Ferromagnetic Metal-Graphene Interfaces.

Edge contact geometries are thought to yield ultralow contact resistances in most nonferromagnetic metal-graphene interfaces, owing to their large metal-graphene coupling strengths. Here, we examine the contact resistance of edge- versus surface-contacted ferromagnetic metal-graphene interfaces (i.e., nickel- and cobalt-graphene interfaces) using both single-layer and few-layer graphene. Good q...

متن کامل

Bifunctional anchors connecting carbon nanotubes to metal electrodes for improved nanoelectronics.

Since their discovery in 1991, carbon nanotubes have attracted much attention due to their unique electric, mechanical, and chemical properties.1-5 Numerous breakthroughs have led to practical fabrication of carbon nanotube electronics devices, such as transistors,6 interconnects,7 spintronics,8 and sensors. In addition, exfoliated or single graphene sheets show promise as an alternative materi...

متن کامل

Metal–nanocarbon contacts

To realize nanocarbons in general and carbon nanotube (CNT) in particular as on-chip interconnect materials, the contact resistance stemming from the metal–CNT interface must be well understood and minimized. Understanding the complex mechanisms at the interface can lead to effective contact resistance reduction. In this study, we compile existing published results and understanding for two met...

متن کامل

Reducing contact resistance in graphene devices through contact area patterning.

Performance of graphene electronics is limited by contact resistance associated with the metal-graphene (M-G) interface, where unique transport challenges arise as carriers are injected from a 3D metal into a 2D-graphene sheet. In this work, enhanced carrier injection is experimentally achieved in graphene devices by forming cuts in the graphene within the contact regions. These cuts are orient...

متن کامل

A Study on Graphene—Metal Contact

The contact resistance between graphene and metal electrodes is crucial for the achievement of high-performance graphene devices. In this study, we review our recent study on the graphene–metal contact characteristics from the following viewpoints: (1) metal preparation method; (2) asymmetric conductance; (3) annealing effect; (4) interfaces impact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010